Electronic hydrodynamics in graphene
نویسندگان
چکیده
منابع مشابه
Electronic multicriticality in bilayer graphene
We map out the possible ordered states in bilayer graphene at the neutrality point by extending the previous renormalization group treatment of many-body instabilities to finite temperature, trigonal warping and externally applied perpendicular electric field.We were able to analytically determine all outcomes of the RG flow equations for the nine four-fermion coupling constants.While the full ...
متن کاملElectronic transport in polycrystalline graphene.
Most materials in available macroscopic quantities are polycrystalline. Graphene, a recently discovered two-dimensional form of carbon with strong potential for replacing silicon in future electronics, is no exception. There is growing evidence of the polycrystalline nature of graphene samples obtained using various techniques. Grain boundaries, intrinsic topological defects of polycrystalline ...
متن کاملElectronic-structural dynamics in graphene
We review our recent time- and angle-resolved photoemission spectroscopy experiments, which measure the transient electronic structure of optically driven graphene. For pump photon energies in the near infrared ([Formula: see text]), we have discovered the formation of a population-inverted state near the Dirac point, which may be of interest for the design of THz lasing devices and optical amp...
متن کاملGraphene Electronic Tattoo Sensors.
Tattoo-like epidermal sensors are an emerging class of truly wearable electronics, owing to their thinness and softness. While most of them are based on thin metal films, a silicon membrane, or nanoparticle-based printable inks, we report sub-micrometer thick, multimodal electronic tattoo sensors that are made of graphene. The graphene electronic tattoo (GET) is designed as filamentary serpenti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Physics
سال: 2019
ISSN: 0003-4916
DOI: 10.1016/j.aop.2019.167979